Existence for Nonlocal Variational Problems in Peridynamics

We present an existence theory based on minimization of the nonlocal energies appearing in peridynamics, which is a nonlocal continuum model in solid mechanics that avoids the use of deformation gradients. We employ the direct method of the calculus of variations in order to find minimizers of the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2014-01, Vol.46 (1), p.890-916
Hauptverfasser: Bellido, Jose C, Mora-Corral, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 916
container_issue 1
container_start_page 890
container_title SIAM journal on mathematical analysis
container_volume 46
creator Bellido, Jose C
Mora-Corral, Carlos
description We present an existence theory based on minimization of the nonlocal energies appearing in peridynamics, which is a nonlocal continuum model in solid mechanics that avoids the use of deformation gradients. We employ the direct method of the calculus of variations in order to find minimizers of the energy of a deformation. Lower semicontinuity is proved under a weaker condition than convexity, whereas coercivity is proved via a nonlocal Poincare inequality. We cover Dirichlet, Neumann, and mixed boundary conditions. The existence theory is set in the Lebesgue $L^p$ spaces and in the fractional Sobolev $W^{s,p}$ spaces, for $0 < s < 1$ and $1 < p < \infty$. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/130911548
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520980209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3225116731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-481c08d17b08e03e742dbd79145b996b11e095b6cbccc511eba748cbd0852a1f3</originalsourceid><addsrcrecordid>eNpdkE9LxDAQxYMouK4e_AYFL3qozrRJk-BJlvUPLLoH9VqSNIUsbbMmLbjf3iwrHrzMzIMfjzePkEuEW8SS32EJEpFRcURmCJLlPIljMgMoqxwpwik5i3EDgBWVMCP3y28XRzsYm7U-ZK9-6LxRXfapglOj80O618HrzvYxc0O2tsE1u0H1zsRzctKqLtqL3z0nH4_L98Vzvnp7elk8rHJTSBhzKtCAaJBrEBZKy2nR6IZLpExLWWlEm4LqymhjDEtKK06F0Q0IVihsyzm5Pvhug_-abBzr3kVju04N1k-xRlaAFJBGQq_-oRs_hfTEngIQwDhlibo5UCb4GINt621wvQq7GqHe11j_1Vj-AOl5Yoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500805745</pqid></control><display><type>article</type><title>Existence for Nonlocal Variational Problems in Peridynamics</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Bellido, Jose C ; Mora-Corral, Carlos</creator><creatorcontrib>Bellido, Jose C ; Mora-Corral, Carlos</creatorcontrib><description>We present an existence theory based on minimization of the nonlocal energies appearing in peridynamics, which is a nonlocal continuum model in solid mechanics that avoids the use of deformation gradients. We employ the direct method of the calculus of variations in order to find minimizers of the energy of a deformation. Lower semicontinuity is proved under a weaker condition than convexity, whereas coercivity is proved via a nonlocal Poincare inequality. We cover Dirichlet, Neumann, and mixed boundary conditions. The existence theory is set in the Lebesgue $L^p$ spaces and in the fractional Sobolev $W^{s,p}$ spaces, for $0 &lt; s &lt; 1$ and $1 &lt; p &lt; \infty$. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/130911548</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Calculus of variations ; Deformation ; Dirichlet problem ; Energy ; Energy conservation ; Energy use ; Inequalities ; Mathematical analysis ; Mechanics ; Optimization ; Solid mechanics</subject><ispartof>SIAM journal on mathematical analysis, 2014-01, Vol.46 (1), p.890-916</ispartof><rights>2014, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-481c08d17b08e03e742dbd79145b996b11e095b6cbccc511eba748cbd0852a1f3</citedby><cites>FETCH-LOGICAL-c290t-481c08d17b08e03e742dbd79145b996b11e095b6cbccc511eba748cbd0852a1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3183,27923,27924</link.rule.ids></links><search><creatorcontrib>Bellido, Jose C</creatorcontrib><creatorcontrib>Mora-Corral, Carlos</creatorcontrib><title>Existence for Nonlocal Variational Problems in Peridynamics</title><title>SIAM journal on mathematical analysis</title><description>We present an existence theory based on minimization of the nonlocal energies appearing in peridynamics, which is a nonlocal continuum model in solid mechanics that avoids the use of deformation gradients. We employ the direct method of the calculus of variations in order to find minimizers of the energy of a deformation. Lower semicontinuity is proved under a weaker condition than convexity, whereas coercivity is proved via a nonlocal Poincare inequality. We cover Dirichlet, Neumann, and mixed boundary conditions. The existence theory is set in the Lebesgue $L^p$ spaces and in the fractional Sobolev $W^{s,p}$ spaces, for $0 &lt; s &lt; 1$ and $1 &lt; p &lt; \infty$. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Calculus of variations</subject><subject>Deformation</subject><subject>Dirichlet problem</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy use</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Optimization</subject><subject>Solid mechanics</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9LxDAQxYMouK4e_AYFL3qozrRJk-BJlvUPLLoH9VqSNIUsbbMmLbjf3iwrHrzMzIMfjzePkEuEW8SS32EJEpFRcURmCJLlPIljMgMoqxwpwik5i3EDgBWVMCP3y28XRzsYm7U-ZK9-6LxRXfapglOj80O618HrzvYxc0O2tsE1u0H1zsRzctKqLtqL3z0nH4_L98Vzvnp7elk8rHJTSBhzKtCAaJBrEBZKy2nR6IZLpExLWWlEm4LqymhjDEtKK06F0Q0IVihsyzm5Pvhug_-abBzr3kVju04N1k-xRlaAFJBGQq_-oRs_hfTEngIQwDhlibo5UCb4GINt621wvQq7GqHe11j_1Vj-AOl5Yoo</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Bellido, Jose C</creator><creator>Mora-Corral, Carlos</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>Existence for Nonlocal Variational Problems in Peridynamics</title><author>Bellido, Jose C ; Mora-Corral, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-481c08d17b08e03e742dbd79145b996b11e095b6cbccc511eba748cbd0852a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied mathematics</topic><topic>Calculus of variations</topic><topic>Deformation</topic><topic>Dirichlet problem</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy use</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Optimization</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellido, Jose C</creatorcontrib><creatorcontrib>Mora-Corral, Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellido, Jose C</au><au>Mora-Corral, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence for Nonlocal Variational Problems in Peridynamics</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>46</volume><issue>1</issue><spage>890</spage><epage>916</epage><pages>890-916</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We present an existence theory based on minimization of the nonlocal energies appearing in peridynamics, which is a nonlocal continuum model in solid mechanics that avoids the use of deformation gradients. We employ the direct method of the calculus of variations in order to find minimizers of the energy of a deformation. Lower semicontinuity is proved under a weaker condition than convexity, whereas coercivity is proved via a nonlocal Poincare inequality. We cover Dirichlet, Neumann, and mixed boundary conditions. The existence theory is set in the Lebesgue $L^p$ spaces and in the fractional Sobolev $W^{s,p}$ spaces, for $0 &lt; s &lt; 1$ and $1 &lt; p &lt; \infty$. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130911548</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2014-01, Vol.46 (1), p.890-916
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_miscellaneous_1520980209
source LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Calculus of variations
Deformation
Dirichlet problem
Energy
Energy conservation
Energy use
Inequalities
Mathematical analysis
Mechanics
Optimization
Solid mechanics
title Existence for Nonlocal Variational Problems in Peridynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20for%20Nonlocal%20Variational%20Problems%20in%20Peridynamics&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Bellido,%20Jose%20C&rft.date=2014-01-01&rft.volume=46&rft.issue=1&rft.spage=890&rft.epage=916&rft.pages=890-916&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/130911548&rft_dat=%3Cproquest_cross%3E3225116731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1500805745&rft_id=info:pmid/&rfr_iscdi=true