Existence for Nonlocal Variational Problems in Peridynamics

We present an existence theory based on minimization of the nonlocal energies appearing in peridynamics, which is a nonlocal continuum model in solid mechanics that avoids the use of deformation gradients. We employ the direct method of the calculus of variations in order to find minimizers of the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2014-01, Vol.46 (1), p.890-916
Hauptverfasser: Bellido, Jose C, Mora-Corral, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an existence theory based on minimization of the nonlocal energies appearing in peridynamics, which is a nonlocal continuum model in solid mechanics that avoids the use of deformation gradients. We employ the direct method of the calculus of variations in order to find minimizers of the energy of a deformation. Lower semicontinuity is proved under a weaker condition than convexity, whereas coercivity is proved via a nonlocal Poincare inequality. We cover Dirichlet, Neumann, and mixed boundary conditions. The existence theory is set in the Lebesgue $L^p$ spaces and in the fractional Sobolev $W^{s,p}$ spaces, for $0 < s < 1$ and $1 < p < \infty$. [PUBLICATION ABSTRACT]
ISSN:0036-1410
1095-7154
DOI:10.1137/130911548