Approaching Optimality for Solving SDD Linear Systems

We present an algorithm that on input of an $n$-vertex $m$-edge weighted graph $G$ and a value $k$ produces an incremental sparsifier $\hat{G}$ with $n-1 + m/k$ edges, such that the relative condition number of $G$ with $\hat{G}$ is bounded above by $\tilde{O}(k\log^2 n)$, with probability $1-p$ (we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 2014-01, Vol.43 (1), p.337-354
Hauptverfasser: Koutis, Ioannis, Miller, Gary L, Peng, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an algorithm that on input of an $n$-vertex $m$-edge weighted graph $G$ and a value $k$ produces an incremental sparsifier $\hat{G}$ with $n-1 + m/k$ edges, such that the relative condition number of $G$ with $\hat{G}$ is bounded above by $\tilde{O}(k\log^2 n)$, with probability $1-p$ (we use the $\tilde{O}()$ notation to hide a factor of at most $(\log\log n)^4$). The algorithm runs in time $\tilde{O}((m \log{n} + n\log^2{n})\log(1/p)).$ As a result, we obtain an algorithm that on input of an $n\times n$ symmetric diagonally dominant matrix $A$ with $m$ nonzero entries and a vector $b$ computes a vector ${x}$ satisfying $||{x}-A^{+}b||_A
ISSN:0097-5397
1095-7111
DOI:10.1137/110845914