A Numerical Investigation of Combustion and Mixture Formation in a Compressed Natural Gas DISI Engine With Centrally Mounted Single-Hole Injector

Direct injection of natural gas into the cylinder of spark ignition (SI) engines has shown a great potential to achieve the best fuel economy and reduced emission levels. Since the technology is rather new, in-cylinder flow phenomena have not been completely investigated. In this study, a numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2013-09, Vol.135 (9), p.1-9
Hauptverfasser: Yadollahi, B, Boroomand, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct injection of natural gas into the cylinder of spark ignition (SI) engines has shown a great potential to achieve the best fuel economy and reduced emission levels. Since the technology is rather new, in-cylinder flow phenomena have not been completely investigated. In this study, a numerical model has been developed in AVL FIRE software to perform an investigation of natural gas direct injection into the cylinder of spark ignition internal combustion engines. In this regard, two main parts have been taken into consideration aiming to convert a multipoint port fuel injection (MPFI) gasoline engine to a direct injection natural gas (NG) engine. In the first part of the study, multidimensional simulations of transient injection process, mixing, and flow field have been performed. Using the moving mesh capability, the validated model has been applied to methane injection into the cylinder of a direct injection engine. Five different piston head shapes have been taken into consideration in the investigations. An inwardly opening single-hole injector has been adapted to all cases. The injector location has been set to be centrally mounted. The effects of combustion chamber geometry have been studied on the mixing of air-fuel inside the cylinder via the quantitative and qualitative representation of results. In the second part, an investigation of the combustion process has been performed on the selected geometry. The spark plug location and ignition timing have been studied as two of the most important variables. Simulation of transient injection was found to be a challenging task because of required computational effort and numerical instabilities. Injection results showed that the narrow bowl piston head geometry is the most suited geometry for NG direct injection (DI) application. A near center position has been shown to be the best spark plug location based on the combustion studies. It has been shown that advanced ignitions timings of up to 50 degrees crank angle ( °CA) should be used in order to obtain better combustion performance.
ISSN:0098-2202
1528-901X
DOI:10.1115/1.4024560