Coordinated Multicell Multiuser Precoding for Maximizing Weighted Sum Energy Efficiency

Energy efficiency optimization of wireless systems has become urgently important due to its impact on the global carbon footprint. In this paper we investigate energy efficient multicell multiuser precoding design and consider a new criterion of weighted sum energy efficiency, which is defined as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2014-02, Vol.62 (3), p.741-751
Hauptverfasser: Shiwen He, Yongming Huang, Luxi Yang, Ottersten, Bjorn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy efficiency optimization of wireless systems has become urgently important due to its impact on the global carbon footprint. In this paper we investigate energy efficient multicell multiuser precoding design and consider a new criterion of weighted sum energy efficiency, which is defined as the weighted sum of the energy efficiencies of multiple cells. This objective is more general than the existing methods and can satisfy heterogeneous requirements from different kinds of cells, but it is hard to tackle due to its sum-of-ratio form. In order to address this non-convex problem, the user rate is first formulated as a polynomial optimization problem with the test conditional probabilities to be optimized. Based on that, the sum-of-ratio form of the energy efficient precoding problem is transformed into a parameterized polynomial form optimization problem, by which a solution in closed form is achieved through a two-layer optimization. We also show that the proposed iterative algorithm is guaranteed to converge. Numerical results are finally provided to confirm the effectiveness of our energy efficient beamforming algorithm. It is observed that in the low signal-to-noise ratio (SNR) region, the optimal energy efficiency and the optimal sum rate are simultaneously achieved by our algorithm; while in the middle-high SNR region, a certain performance loss in terms of the sum rate is suffered to guarantee the weighed sum energy efficiency.
ISSN:1053-587X
1941-0476
1941-0476
DOI:10.1109/TSP.2013.2294595