Collective rotations of fission isomers in actinide nuclei
Using the total-Routhian-surface (TRS) method, the rotational behaviors of fission isomers in the second well of actinide nuclei 234-242U, 236-244pu and 238-246Cm were investigated. The pairing-deformation-frequency self-consistent TRS calculations repro- duced reasonably the experimental moments of...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2014-02, Vol.57 (2), p.189-193 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the total-Routhian-surface (TRS) method, the rotational behaviors of fission isomers in the second well of actinide nuclei 234-242U, 236-244pu and 238-246Cm were investigated. The pairing-deformation-frequency self-consistent TRS calculations repro- duced reasonably the experimental moments of inertia extracted from spectroscopic data. It is calculated that, in these largely elongated (β2 ≈0.65 and β4≈ 0.03) fission isomers, the ν1/2-[981] neutron and π1/2+[651] proton align simultaneously at rotational frequency hω≈0.4 - 0.6 MeV (corresponding to spin I≈80h), which leads to clear upbending in moments of inertia (MoI's). Our calculations have indicated that the hexadecapole deformation f14 influenced significantly the frequency of the rotational alignment of the proton 1/2+[651] orbit. |
---|---|
ISSN: | 1674-7348 1869-1927 |
DOI: | 10.1007/s11433-013-5379-8 |