No-Zero-Entry Space-Time Block Codes Over Time-Selective Fading Channels for MIMO Systems

In MIMO systems, space-time block code (STBC) is good solution for improving system performance. Among the STBCs, coordinate interleaved orthogonal designs (CIODs) combined with QR-decomposition-based decision-feedback decoding (QR-DDF) allow achieving good performance for time-selective fading chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2014-03, Vol.75 (1), p.35-47
Hauptverfasser: Pham, Van-Bien, Sheng, Wei-Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In MIMO systems, space-time block code (STBC) is good solution for improving system performance. Among the STBCs, coordinate interleaved orthogonal designs (CIODs) combined with QR-decomposition-based decision-feedback decoding (QR-DDF) allow achieving good performance for time-selective fading channels. However, half of entries in codeword matrix of CIODs are zeros. These zero entries result in high peak-to-average power ratio (PAPR) and also impose a severe constraint on hardware implementation of the code when turning off some of the transmitting antennas whenever a zero is transmitted. In this paper, we propose a new design of space-time block codes without zero entry in codeword matrix (NZE-STBCs) for time-selective fading channels. The main advantage of the proposed NZE-STBCs is that its peak-to-average ratio (PAPR) is 3 dB lower than that of CIODs, and its hardware implementation is also easier due to eliminating on-off switchers without sacrificing performance. Moreover, similar as CIODs, the proposed NZE-STBCs can use low complexity QR-DDF decoder over time-selective fading channels to enhance performance and reduce decoding complexity. Simulation results show that the proposed NZE-STBCs outperform CIODs for three transmit antennas while performing the same for two and four transmit antennas.
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-013-1339-x