Hydrogen PSA process product purity control method and controller
It is well known in the industry that a primary means for controlling the pressure swing adsorption (PSA) process product gas purity is the adjustment of PSA feed time or adsorption time. If the product impurity is too high, the feed time is shortened and if the impurity level is below the target th...
Gespeichert in:
Veröffentlicht in: | Adsorption : journal of the International Adsorption Society 2014-02, Vol.20 (2-3), p.471-476 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known in the industry that a primary means for controlling the pressure swing adsorption (PSA) process product gas purity is the adjustment of PSA feed time or adsorption time. If the product impurity is too high, the feed time is shortened and if the impurity level is below the target the feed time is increased. Conventionally, the plant operator monitors the product purity and manually adjusts the feed time. Several control methodologies such as classical feedback and feedforward systems were suggested to automate this task with limited success. A novel control methodology based on the measurement of impurity fronts within the adsorber bed was developed by the Praxair Adsorption R&D team. The response of the concentration measurements inside the adsorber vessel to the process upsets and changes in feed time is more rapid than in the product stream. Consequently, closed loop control performance can be made much more effective and the operating impurity set points for product gas can be more aggressive resulting in longer PSA feed times, higher bed utilization and thus higher hydrogen recovery. The control methodology will be discussed in greater detail along with the advantages it has to offer such as improved process performance, disturbance rejection capability and improved process robustness. The control methodology will be illustrated using the hydrogen PSA process as an example. |
---|---|
ISSN: | 0929-5607 1572-8757 |
DOI: | 10.1007/s10450-013-9580-x |