A Sequential Sampling Strategy to Improve Reliability-Based Design Optimization With Implicit Constraint Functions
Reliability-based design optimization (RBDO) has a probabilistic constraint that is used for evaluating the reliability or safety of the system. In modern engineering design, this task is often performed by a computer simulation tool such as finite element method (FEM). This type of computer simulat...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical design (1990) 2012-02, Vol.134 (2), p.1-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reliability-based design optimization (RBDO) has a probabilistic constraint that is used for evaluating the reliability or safety of the system. In modern engineering design, this task is often performed by a computer simulation tool such as finite element method (FEM). This type of computer simulation or computer experiment can be treated a black box, as its analytical function is implicit. This paper presents an efficient sampling strategy on learning the probabilistic constraint function under the design optimization framework. The method is a sequential experimentation around the approximate most probable point (MPP) at each step of optimization process. Our method is compared with the methods of MPP-based sampling, lifted surrogate function, and nonsequential random sampling. We demonstrate it through examples. |
---|---|
ISSN: | 1050-0472 1528-9001 |
DOI: | 10.1115/1.4005597 |