Intertwining Connectivities in Representable Matroids

Let $M$ be a representable matroid and $Q, R, S, T$ subsets of the ground set such that the smallest separation that separates $Q$ from $R$ has order $k$, and the smallest separation that separates $S$ from $T$ has order $l$. We prove that if $M$ is sufficiently large, then there is an element $e$ s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2014-01, Vol.28 (1), p.188-196
Hauptverfasser: Huynh, Tony, van Zwam, Stefan H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $M$ be a representable matroid and $Q, R, S, T$ subsets of the ground set such that the smallest separation that separates $Q$ from $R$ has order $k$, and the smallest separation that separates $S$ from $T$ has order $l$. We prove that if $M$ is sufficiently large, then there is an element $e$ such that in one of $M\backslash e$ and $M\!/e$ both connectivities are preserved. For matroids representable over a finite field we prove a stronger result: we show that we can remove $e$ such that both a connectivity and a minor of $M$ are preserved. (A corrected version is attached.) [PUBLICATION ABSTRACT]
ISSN:0895-4801
1095-7146
DOI:10.1137/13091837X