Intertwining Connectivities in Representable Matroids
Let $M$ be a representable matroid and $Q, R, S, T$ subsets of the ground set such that the smallest separation that separates $Q$ from $R$ has order $k$, and the smallest separation that separates $S$ from $T$ has order $l$. We prove that if $M$ is sufficiently large, then there is an element $e$ s...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2014-01, Vol.28 (1), p.188-196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $M$ be a representable matroid and $Q, R, S, T$ subsets of the ground set such that the smallest separation that separates $Q$ from $R$ has order $k$, and the smallest separation that separates $S$ from $T$ has order $l$. We prove that if $M$ is sufficiently large, then there is an element $e$ such that in one of $M\backslash e$ and $M\!/e$ both connectivities are preserved. For matroids representable over a finite field we prove a stronger result: we show that we can remove $e$ such that both a connectivity and a minor of $M$ are preserved. (A corrected version is attached.) [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/13091837X |