Parameter estimation in high dimensional Gaussian distributions

In order to compute the log-likelihood for high dimensional Gaussian models, it is necessary to compute the determinant of the large, sparse, symmetric positive definite precision matrix. Traditional methods for evaluating the log-likelihood, which are typically based on Cholesky factorisations, are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2014-03, Vol.24 (2), p.247-263
Hauptverfasser: Aune, Erlend, Simpson, Daniel P., Eidsvik, Jo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to compute the log-likelihood for high dimensional Gaussian models, it is necessary to compute the determinant of the large, sparse, symmetric positive definite precision matrix. Traditional methods for evaluating the log-likelihood, which are typically based on Cholesky factorisations, are not feasible for very large models due to the massive memory requirements. We present a novel approach for evaluating such likelihoods that only requires the computation of matrix-vector products. In this approach we utilise matrix functions, Krylov subspaces, and probing vectors to construct an iterative numerical method for computing the log-likelihood.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-012-9368-y