Using the Pareto Set Pursuing Multiobjective Optimization Approach for Hybridization of a Plug-In Hybrid Electric Vehicle

A plug-in hybrid electric vehicle (PHEV) can improve fuel economy and emission reduction significantly compared to hybrid electric vehicles and conventional internal combustion engine (ICE) vehicles. Currently there lacks an efficient and effective approach to identify the optimal combination of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical design (1990) 2012-09, Vol.134 (9), p.1-6
Hauptverfasser: Shahi, Shashi K, Wang, G. Gary, An, Liqiang, Bibeau, Eric, Pirmoradi, Zhila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A plug-in hybrid electric vehicle (PHEV) can improve fuel economy and emission reduction significantly compared to hybrid electric vehicles and conventional internal combustion engine (ICE) vehicles. Currently there lacks an efficient and effective approach to identify the optimal combination of the battery pack size, electric motor, and engine for PHEVs in the presence of multiple design objectives such as fuel economy, operating cost, and emission. This work proposes a design approach for optimal PHEV hybridization. Through integrating the Pareto set pursuing (PSP) multiobjective optimization algorithm and powertrain system analysis toolkit (PSAT) simulator on a Toyota Prius PHEV platform, 4480 possible combinations of design parameters (20 batteries, 14 motors, and 16 engines) were explored for PHEV20 and PHEV40 powertrain configurations. The proposed approach yielded the optimal solution in a small fraction of computational time, as compared to an exhaustive search. This confirms the efficiency and applicability of PSP to problems with discrete variables. In the design context we have found that battery, motor, and engine collectively define the optimal hybridization scheme, which also varies with the drive cycle and all electric range (AER). The proposed method and software platform could be applied to optimize other powertrain designs.
ISSN:1050-0472
1528-9001
DOI:10.1115/1.4007149