Comparison between properties of polyether polytriazole elastomers and polyether polyurethane elastomers

In order to explore the application of click chemistry in the field of elastomer materials, the comparison between the properties of polyurethane and polytriazole elastomers has been carried out. Propargyl‐terminated ethylene oxide‐tetrahydrofuran copolymer (PTPET) has been prepared from the ethylen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2014-03, Vol.25 (3), p.314-321
Hauptverfasser: Qu, Zhengyang, Zhai, Jinxian, Yang, Rongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to explore the application of click chemistry in the field of elastomer materials, the comparison between the properties of polyurethane and polytriazole elastomers has been carried out. Propargyl‐terminated ethylene oxide‐tetrahydrofuran copolymer (PTPET) has been prepared from the ethylene oxide‐tetrahydrofuran copolymer (PET) by end modification. Using polyisocyanate N100 and polyazide compounds as cross‐linkers, PET polyurethane and PTPET polytriazole elastomers have been prepared through urethane and copper‐catalyzed azide‐alkyne huisgen [3 + 2] dipolar cycloaddition reactions, respectively. Mechanical properties indicate that, to be different from those of polyurethane elastomers, the modulus E and stress σb of polytriazole elastomers increase at first, and then decrease with the increase in R. At around the stoichiometric ratio, the modulus E and stress σb reach a maximum, and the strain εb reaches a minimum. Swelling tests demonstrate that the Mc of polytriazole elastomers has a minimum value at the stoichiometric ratio. The dynamic mechanical analysis indicates that both polyurethane and polytriazole elastomers have the same glass transition temperature of −64°C, although polytriazole elastomers exhibit lower dissipation factor tan δ. Thermal analysis shows that polytriazole elastomers have better thermal stability than polyurethane elastomers. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.3242