Haul Time Effects on Unmodified, Foamed, and Additive-Modified Binders Used in Hot-Mix Asphalt
In recent years, warm technologies have made enormous changes to the flexible pavement industry in a variety of ways. Warm-mix asphalt is the most recognizable warm technology product, although other advantages are associated with better compaction over a wide range of temperatures and have made lon...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2013, Vol.2347 (1), p.88-95 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, warm technologies have made enormous changes to the flexible pavement industry in a variety of ways. Warm-mix asphalt is the most recognizable warm technology product, although other advantages are associated with better compaction over a wide range of temperatures and have made long-haul distances appealing for some applications. This paper focuses on using warm-mix technology at traditional hot-mix production temperatures for the purpose of facilitating long haul distances. The primary objective of this study was to investigate how binder-related properties change with haul time when material was mixed at hot-mix temperatures. A secondary objective was to determine if any behavioral differences were present between asphalt binders with no additive, foamed asphalt binders, and asphalt binders with a chemical additive. Plant-mixed asphalt was used for the investigation. The overall conclusion of the research was that haul times of 1 to 8 h produced no major differences in aging for a given binder type or between binder types. Subtle differences were observed between binder types in some instances (e.g., low-temperature properties were slightly better for mixes using warm-mix technologies). |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.3141/2347-10 |