Artificial Neural Network-Based Model for Calculating the Flow Composition Influence of Solid Oxide Fuel Cell
The paper presents use of an artificial neural network (ANN) for predicting the thermal-flow behavior of a solid oxide fuel cell with no algorithmic solution merely by utilizing available experimental data. The error backpropagation algorithm was used for an ANN training procedure.
Gespeichert in:
Veröffentlicht in: | Journal of electrochemical energy conversion and storage 2014-04, Vol.11 (2), p.np-np |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents use of an artificial neural network (ANN) for predicting the thermal-flow behavior of a solid oxide fuel cell with no algorithmic solution merely by utilizing available experimental data. The error backpropagation algorithm was used for an ANN training procedure. |
---|---|
ISSN: | 2381-6872 1550-624X 2381-6910 1551-6989 |
DOI: | 10.1115/1.4025922 |