Artificial Neural Network-Based Model for Calculating the Flow Composition Influence of Solid Oxide Fuel Cell

The paper presents use of an artificial neural network (ANN) for predicting the thermal-flow behavior of a solid oxide fuel cell with no algorithmic solution merely by utilizing available experimental data. The error backpropagation algorithm was used for an ANN training procedure.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrochemical energy conversion and storage 2014-04, Vol.11 (2), p.np-np
Hauptverfasser: Milewski, Jarosław, Świrski, Konrad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents use of an artificial neural network (ANN) for predicting the thermal-flow behavior of a solid oxide fuel cell with no algorithmic solution merely by utilizing available experimental data. The error backpropagation algorithm was used for an ANN training procedure.
ISSN:2381-6872
1550-624X
2381-6910
1551-6989
DOI:10.1115/1.4025922