Transition Modeling for Vortex Generating Jets on Low-Pressure Turbine Profiles

Steady blowing vortex generating jets (VGJ) on highly-loaded low-pressure turbine profiles have shown to be a promising way to decrease total pressure losses at low Reynolds-numbers by reducing laminar separation. In the present paper, the state of the art turbomachinery design code TRACE with RANS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of turbomachinery 2013-01, Vol.135 (1), p.1-8
Hauptverfasser: Herbst, Florian, Kožulović, Dragan, Seume, Joerg R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steady blowing vortex generating jets (VGJ) on highly-loaded low-pressure turbine profiles have shown to be a promising way to decrease total pressure losses at low Reynolds-numbers by reducing laminar separation. In the present paper, the state of the art turbomachinery design code TRACE with RANS turbulence closure and coupled γ-ReΘ transition model is applied to the prediction of typical aerodynamic design parameters of various VGJ configurations in steady simulations. High-speed cascade wind tunnel experiments for a wide range of Reynolds-numbers, two VGJ positions, and three jet blowing ratios are used for validation. Since the original transition model overpredicts separation and losses at Re2is≤100·103, an extra mode for VGJ induced transition is introduced. Whereas the criterion for transition is modeled by a filtered Q vortex criterion the transition development itself is modeled by a reduction of the local transition-onset momentum-thickness Reynolds number. The new model significantly improves the quality of the computational results by capturing the corresponding local transition process in a physically reasonable way. This is shown to yield an improved quantitative prediction of surface pressure distributions and total pressure losses.
ISSN:0889-504X
1528-8900
DOI:10.1115/1.4006421