A Multilabel Texture Segmentation Based on Local Entropy Signature

We propose a multilabel segmentation that aims to partition a texture image into multiple regions based on a homogeneity condition using local entropy measured at varying scales. For multi-label segmentation, a bipartitioning segmentation scheme is recursively applied to confined regions obtained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-6
Hauptverfasser: Park, Bo-Young, Hong, Byung-Woo, Kim, Hyo-Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a multilabel segmentation that aims to partition a texture image into multiple regions based on a homogeneity condition using local entropy measured at varying scales. For multi-label segmentation, a bipartitioning segmentation scheme is recursively applied to confined regions obtained by previous segmentation steps. The empirical entropy is measured in the local neighbourhoods at varying scales, which is used as a characteristic feature in determining the spatial regularity of elementary texture structures. The experimental results on a variety of texture images demonstrate the efficiency and robustness of the proposed algorithm.
ISSN:1024-123X
1563-5147
DOI:10.1155/2013/651581