Using Bio-inspired intelligence for Web opinion Mining

This work proposes a bio-inspired based methodology in order to extract and evaluate user's web texts / posts. To validate the methodology, a dataset is constructed using real data arising from Greek fora. The obtained results are compared with a commonly used machine learning technique (decisi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2014-01, Vol.87 (5), p.36-43
Hauptverfasser: Stylios, George, Katsis, Christos D, Christodoulakis, Dimitris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes a bio-inspired based methodology in order to extract and evaluate user's web texts / posts. To validate the methodology, a dataset is constructed using real data arising from Greek fora. The obtained results are compared with a commonly used machine learning technique (decision trees- C4. 5 algorithm). The bio-inspired algorithm (namely the hybrid PSO/ACO2 algorithm) achieved average classification accuracy 90. 59% in a 10 fold cross validation experiment, outperforming the C4. 5 algorithm (83. 66%). The proposed methodology could be easily integrated with a decision support system providing services in the fields of e-commerce or e-government in order to help merchants acquire customer satisfaction or public administrators capture common understanding.
ISSN:0975-8887
0975-8887
DOI:10.5120/15207-3610