Finite Element Simulation of Cutting Forces in Orthogonal Machining of Titanium Alloy Ti-6Al-4V

In this paper, a Lagrangian finite element-based machining model is applied in the simulation of cutting forces in two-dimensional orthogonal cutting of titanium Ti-6Al-4V alloy. The simulations were conducted using 2D Finite Element Method (FEM) machining simulation software. In addition, the cutti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-01, Vol.474 (Novel Trends in Production Devices and Systems), p.192-199
Hauptverfasser: Kandrac, Ladislav, Mankova, Ildikó, Vrabel', Marek, Beno, Jozef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a Lagrangian finite element-based machining model is applied in the simulation of cutting forces in two-dimensional orthogonal cutting of titanium Ti-6Al-4V alloy. The simulations were conducted using 2D Finite Element Method (FEM) machining simulation software. In addition, the cutting experiments were carried out under the different cutting speed, feed and tool geometry (rake angle, clearance angle and cutting edge radius). The effect of cutting speed, feed and tool geometry on cutting force were investigated. The results obtained from the finite element method (FEM) and experimental studies were compared.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.474.192