Lin's method for heteroclinic chains involving periodic orbits
We present an extension of the theory known as Lin's method to heteroclinic chains that connect hyperbolic equilibria and hyperbolic periodic orbits. Based on the construction of a so-called Lin orbit, that is a sequence of continuous partial orbits that only have jumps in a certain prescribed...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2010-01, Vol.23 (1), p.23-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an extension of the theory known as Lin's method to heteroclinic chains that connect hyperbolic equilibria and hyperbolic periodic orbits. Based on the construction of a so-called Lin orbit, that is a sequence of continuous partial orbits that only have jumps in a certain prescribed linear subspace, estimates for these jumps are derived. We use the jump estimates to discuss bifurcation equations for homoclinic orbits near heteroclinic cycles between an equilibrium and a periodic orbit (EtoP cycles). |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/0951-7715/23/1/002 |