Lin's method for heteroclinic chains involving periodic orbits

We present an extension of the theory known as Lin's method to heteroclinic chains that connect hyperbolic equilibria and hyperbolic periodic orbits. Based on the construction of a so-called Lin orbit, that is a sequence of continuous partial orbits that only have jumps in a certain prescribed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2010-01, Vol.23 (1), p.23-54
Hauptverfasser: Knobloch, Jürgen, Rieß, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an extension of the theory known as Lin's method to heteroclinic chains that connect hyperbolic equilibria and hyperbolic periodic orbits. Based on the construction of a so-called Lin orbit, that is a sequence of continuous partial orbits that only have jumps in a certain prescribed linear subspace, estimates for these jumps are derived. We use the jump estimates to discuss bifurcation equations for homoclinic orbits near heteroclinic cycles between an equilibrium and a periodic orbit (EtoP cycles).
ISSN:0951-7715
1361-6544
DOI:10.1088/0951-7715/23/1/002