Impact of Mutations in Highly Conserved Amino Acids of the HIV-1 Gag-p24 and Env-gp120 Proteins on Viral Replication in Different Genetic Backgrounds: e94240

It has been hypothesized that a single mutation at a highly conserved amino acid site (HCS) can be severely deleterious to HIV in most if not all isolate-specific genetic backgrounds. Consequently, potentially universal HIV-1 vaccines exclusively targeting highly conserved regions of the viral prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-04, Vol.9 (4)
Hauptverfasser: Liu, Yi, Rao, Ushnal, McClure, Jan, Konopa, Philip, Manocheewa, Siriphan, Kim, Moon, Chen, Lennie, Troyer, Ryan M, Tebit, Denis M, Holte, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been hypothesized that a single mutation at a highly conserved amino acid site (HCS) can be severely deleterious to HIV in most if not all isolate-specific genetic backgrounds. Consequently, potentially universal HIV-1 vaccines exclusively targeting highly conserved regions of the viral proteome have been proposed. To test this hypothesis, we examined the impact of 10 Gag-p24 and 9 Env-gp120 HCS single mutations on viral fitness. In the original founder sequence of the subject in whom these mutations were identified, all Gag-p24 HCS mutations significantly reduced viral replication fitness, including 7 that were lethal. Similar results were obtained at 9/10 sites when the same mutations were introduced into the founder sequences of two epidemiologically unlinked subjects. In contrast, none of the 9 Env-gp120 HCS mutations were lethal in the original founder sequence, and four had no fitness cost. Hence, HCS mutations in Gag-p24 are likely to be severely deleterious in different HIV-1 subtype B backgrounds; however, some HCS mutations in both Gag-p24 and Env-gp120 fragments can be well tolerated. Therefore, when designing HIV-1 immunogens that are intended to force the virus to nonviable escape pathways, the fitness constraints on the HIV segments included should be considered beyond their conservation level.
ISSN:1932-6203
DOI:10.1371/journal.pone.0094240