The dramatic climate warming in the Qaidam Basin, northeastern Tibetan Plateau, during 1961–2010

ABSTRACT On the basis of meteorological station records during 1961–2010, we investigate the variations of temperature and precipitation in the Qaidam Basin. Results show that climate warming is significant in the region of Qaidam Basin over the past 50 years, with an average warming rate of 0.53 °C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of climatology 2014-04, Vol.34 (5), p.1524-1537
Hauptverfasser: Wang, Xuejia, Yang, Meixue, Liang, Xiaowen, Pang, Guojin, Wan, Guoning, Chen, Xiaolei, Luo, Xiaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT On the basis of meteorological station records during 1961–2010, we investigate the variations of temperature and precipitation in the Qaidam Basin. Results show that climate warming is significant in the region of Qaidam Basin over the past 50 years, with an average warming rate of 0.53 °C 10a−1. The largest and smallest warming rate happened at Mangya station (0.89 °C 10a−1) and Lenghu station (0.24 °C 10a−1), respectively. Seasonal warming was greatest in winter at eight meteorological stations, ranging from 0.43 °C 10a−1 (Lenghu station) to 1.01 °C 10a−1 (Delingha station). Since 1961, the annual precipitation has increased with a rate of 7.38 mm 10a−1. Seasonal precipitation mainly increased in summer (4.02 mm 10a−1). The maximum precipitation increase occurred at Delingha station (25.09 mm 10a−1) and the minimum at Lenghu station (0.10 mm 10a−1). The elevation dependency of warming trends is unremarkable because most of the stations are located at lower altitudes. It is suggested that sunshine duration is related to the tendencies of temperature increase at different stations. Pollution emissions from industrial processes (i.e. brown clouds) and urbanization are the main factors contributing to the warming climate. Furthermore, the predominant weakening of zonal wind speed over the Tibetan Plateau resulted from the global warming also contributes to the climate warming in the Qaidam Basin. Consequently, the warming rate in the Qaidam Basin is much higher than in other regions over the Tibetan Plateau. The Qaidam Basin is thus considered to be the most susceptible region with the most significant warming in the Tibetan Plateau.
ISSN:0899-8418
1097-0088
DOI:10.1002/joc.3781