Numerical investigation of radiative properties and surface plasmon resonance of silver nanorod dimers on a substrate

When the distance between two silver nanoparticles is small enough, interparticle surface plasmon coupling has a great impact on their radiative properties. It is becoming a promising technique to use in the sensing and imaging. A model based on finite difference time domain method is developed to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 2014-01, Vol.132, p.28-35
Hauptverfasser: An, Wei, Zhu, Tong, Zhu, QunZhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When the distance between two silver nanoparticles is small enough, interparticle surface plasmon coupling has a great impact on their radiative properties. It is becoming a promising technique to use in the sensing and imaging. A model based on finite difference time domain method is developed to investigate the effect of the assembled parameters on the radiative properties and the field-enhancement effect of silver nanorod dimer. The numerical results indicate that the radiative properties of silver nanorod dimer are very sensitive to the assembled angle and the polarization orientation of incident wave. There is great difference on the intensity and location of field-enhancement effect for the cases of different assembled angle and polarization. The most intensive field-enhancement effect occurs in the middle of two nanorods when two nanorods is assembled head to head and the polarization orientation parallels to the length axis of nanorods. Moreover, compared with the single nanorod, the wavelength of extinction peak of dimer has a red-shift, and the intensity of field-enhancement effect on the dimer is more intensive than that of single particle. With the increasing of particle length, extinction cross-section of silver nanorod dimer rises, while extinction efficiency and scattering efficiency firstly increase then drop down gradually. In addition, the extinction peaks of silver nanorod dimer on the substrate are smaller than that without the substrate, and their extinction peaks has a red-shift compared with that without the substrate. ► Radiative properties of silver nanorod dimer are very sensitive to the assembled angle. ► The projective length of nanorod dimer on the polarization orientation is crucial. ► Compared with single nanorod, wavelength of extinction peak of dimer has a red-shift. ► Extinction peaks of dimer on the substrate are smaller than that without the substrate.
ISSN:0022-4073
1879-1352
DOI:10.1016/j.jqsrt.2013.01.013