Cross-protection provided by live Shigella mutants lacking major antigens
Abstract The immune response elicited by Shigella infections is dominated by serotype-specific antibodies recognizing the LPS O-antigens. Although a marked antibody response to invasion plasmid antigens (Ipa-s) shared by all virulent strains is also induced, the varying level of immunity elicited by...
Gespeichert in:
Veröffentlicht in: | International journal of medical microbiology 2013-05, Vol.303 (4), p.167-175 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The immune response elicited by Shigella infections is dominated by serotype-specific antibodies recognizing the LPS O-antigens. Although a marked antibody response to invasion plasmid antigens (Ipa-s) shared by all virulent strains is also induced, the varying level of immunity elicited by natural infections is serotype-restricted. Previous vaccines have tried to mimic and achieve this serotype-specific, infection-induced immunity. As, however, the four Shigella species can express 50 different types of O-antigens, current approaches with the aim to induce a broad coverage use a mixture of the most common O-antigens combined in single vaccines. In the current study we present data on an alternative approach to generate immunity protective against multiple serotypes. Mutants lacking both major immune-determinant structures (i.e. the Ipa and O-antigens) were not only highly attenuated, but, unlike their avirulent counterparts still expressing these antigens, elicited a protective immune response to heterologous serotypes in a murine model. Evidence is provided that protection was mediated by the enhanced immunogenic potential of minor conserved antigens. Furthermore, the rough, non-invasive double mutants triggered an immune response different from that induced by the smooth, invasive strains regarding the isotype of antibodies generated. These non-invasive, rough mutants may represent promising candidates for further development into live vaccines for the prophylaxis of bacillary dysentery in areas with multiple endemic serotypes. |
---|---|
ISSN: | 1438-4221 1618-0607 |
DOI: | 10.1016/j.ijmm.2013.02.017 |