Discovering the Sequential Structure of Thought
Multi‐voxel pattern recognition techniques combined with Hidden Markov models can be used to discover the mental states that people go through in performing a task. The combined method identifies both the mental states and how their durations vary with experimental conditions. We apply this method t...
Gespeichert in:
Veröffentlicht in: | Cognitive science 2014-03, Vol.38 (2), p.322-352 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi‐voxel pattern recognition techniques combined with Hidden Markov models can be used to discover the mental states that people go through in performing a task. The combined method identifies both the mental states and how their durations vary with experimental conditions. We apply this method to a task where participants solve novel mathematical problems. We identify four states in the solution of these problems: Encoding, Planning, Solving, and Respond. The method allows us to interpret what participants are doing on individual problem‐solving trials. The duration of the planning state varies on a trial‐to‐trial basis with novelty of the problem. The duration of solution stage similarly varies with the amount of computation needed to produce a solution once a plan is devised. The response stage similarly varies with the complexity of the answer produced. In addition, we identified a number of effects that ran counter to a prior model of the task. Thus, we were able to decompose the overall problem‐solving time into estimates of its components and in way that serves to guide theory. |
---|---|
ISSN: | 0364-0213 1551-6709 |
DOI: | 10.1111/cogs.12068 |