Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: Effect of mucoadhesive coating on antigen uptake and immune adjuvant activity

[Display omitted] In this study, the efficacy of mucoadhesive polymers, i.e., chitosan and glycol chitosan as a mucoadhesive coating material in nasal vaccine delivery was investigated. The Hepatitis B surface Antigen (HBsAg) encapsulated PLGA, chitosan coated PLGA (C-PLGA), and Glycol chitosan coat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutics and biopharmaceutics 2013-11, Vol.85 (3), p.550-559
Hauptverfasser: Pawar, Dilip, Mangal, Sharad, Goswami, Roshan, Jaganathan, K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In this study, the efficacy of mucoadhesive polymers, i.e., chitosan and glycol chitosan as a mucoadhesive coating material in nasal vaccine delivery was investigated. The Hepatitis B surface Antigen (HBsAg) encapsulated PLGA, chitosan coated PLGA (C-PLGA), and Glycol chitosan coated PLGA (GC-PLGA) nanoparticles (NPs) were prepared. The formulations were characterized for particle size, shape, surface charge, and entrapment efficiency. The mucoadhesive ability of coated and non-coated NPs was determined using in vitro mucoadhesion and nasal clearance test. In addition, the systemic uptake and bio-distribution were also evaluated to understand the fate of NPs following nasal delivery. The immuno-adjuvant ability of various formulations was compared by measuring specific antibody titer in serum and secretory. The results indicated that PLGA NPs exhibit negative surface charge, whereas C-PLGA and GC-PLGA NPs exhibited positive surface charge. The GC-PLGA NPs demonstrated lower clearance and better local and systemic uptake compared to chitosan coated and uncoated PLGA NPs. In vivo immunogenicity studies indicated that GC-PLGA NPs could induce significantly higher systemic and mucosal immune response compared to PLGA and C-PLGA NPs. In conclusion, GC-PLGA NPs could be a promising carrier adjuvant for the nasal vaccine delivery for inducing a potent immune response at mucosal surface(s) and systemic circulation.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2013.06.017