Anadromous sea lampreys (Petromyzon marinus) are ecosystem engineers in a spawning tributary

Sea lampreys (Petromyzon marinus) disturb the substratum during nest construction and alter the physical habitat, potentially affecting other stream organisms. We quantified differences in depth, velocity, fine‐sediment coverage, embeddedness, intragravel permeability and benthic invertebrate assemb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Freshwater biology 2014-06, Vol.59 (6), p.1294-1307
Hauptverfasser: Hogg, Robert S, Coghlan, Stephen M., Jr, Zydlewski, Joseph, Simon, Kevin S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sea lampreys (Petromyzon marinus) disturb the substratum during nest construction and alter the physical habitat, potentially affecting other stream organisms. We quantified differences in depth, velocity, fine‐sediment coverage, embeddedness, intragravel permeability and benthic invertebrate assemblages (density and diversity) among nest mounds, nest pits and undisturbed reference locations over a 4‐month period after June spawning. In 2010 and 2011, immediate and persistent effects of nest construction were assessed in summer (July) and in autumn (late September to early October), respectively. Randomly selected nests were sampled annually (25 each in summer and autumn). Nest construction increased stream‐bed complexity by creating and juxtaposing shallow, swift, rocky habitat patches with deep, slow, sandy habitat patches. Mounds had a 50–143% less cover of fine sediment, and a 30–62% reduction in embeddedness, compared to pits and reference locations. These physical changes persisted into the autumn (almost 4 months). Five insect families contributed 74% of the benthic invertebrate abundance: Chironomidae (27%), Hydropsychidae (26%), Heptageniidae (8%), Philopotamidae (7%) and Ephemerellidae (6%). Densities of Hydropsychidae, Philopotamidae and Heptageniidae were up to 10 times greater in mounds than in pits and adjacent reference habitat. In summer, mounds had twice the density of Chironomidae than did pits, and 1.5 times more than reference habitats, but densities were similar among the habitats in autumn. These results suggest that spawning sea lampreys are ecosystem engineers. The physical disturbance caused by nest‐building activity was significant and persistent, increasing habitat heterogeneity and favouring pollution‐sensitive benthic invertebrates and, possibly, drift‐feeding fish.
ISSN:0046-5070
1365-2427
DOI:10.1111/fwb.12349