Pulmonary Compliance and Lung Volume Are Related to Terrestriality in Anuran Amphibians

Dehydration tolerance of anuran amphibians is directly related to their ability to mobilize lymphatic reserves, with more terrestrial species having more effective lymph mobilization dependent on specialized skeletal muscles acting directly on the lymph sacs and via pulmonary ventilation. Consequent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological and biochemical zoology 2014-05, Vol.87 (3), p.374-383
Hauptverfasser: Withers, Philip C., Hedrick, Michael S., Drewes, Robert C., Hillman, Stanley S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dehydration tolerance of anuran amphibians is directly related to their ability to mobilize lymphatic reserves, with more terrestrial species having more effective lymph mobilization dependent on specialized skeletal muscles acting directly on the lymph sacs and via pulmonary ventilation. Consequently, we tested the hypothesis that pulmonary compliance, lung volume, and femoral lymphatic sac volume were related to terrestriality—and, hence, lymph mobilization—for 18 species of aquatic, semiaquatic, or terrestrial anuran amphibians. Lung compliance and volume were significantly related to body mass, but there was no significant phylogenetic pattern. There were significant habitat-related patterns for mass-corrected and phylogenetically corrected residuals for these pulmonary variables. Femoral lymph volume was significantly related to body mass, with no significant phylogenetic pattern, and there was only a weak correlation for habitat with mass-corrected and phylogenetically corrected residuals. These results suggest that pulmonary volume and compliance are strongly related to terrestriality in anuran amphibians and are under significant selection pressure to enhance lymph mobilization, but lymph sac volume does not appear to have a major role in adaptation to terrestriality.
ISSN:1522-2152
1537-5293
DOI:10.1086/676146