Tailoring the Morphology of Mesoporous Titania Thin Films through Biotemplating with Nanocrystalline Cellulose

The tunable porosity of titania thin films is a key factor for successful applications in photovoltaics, sensing, and photocatalysis. Here, we report on nanocrystalline cellulose (NCC) as a novel shape-persistent templating agent enabling the straightforward synthesis of mesoporous titania thin film...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2014-04, Vol.136 (16), p.5930-5937
Hauptverfasser: Ivanova, Alesja, Fattakhova-Rohlfing, Dina, Kayaalp, Bugra Eymer, Rathouský, Jiri, Bein, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tunable porosity of titania thin films is a key factor for successful applications in photovoltaics, sensing, and photocatalysis. Here, we report on nanocrystalline cellulose (NCC) as a novel shape-persistent templating agent enabling the straightforward synthesis of mesoporous titania thin films. The obtained structures are highly porous anatase morphologies having well-defined, narrow pore size distributions. By varying the titania-to-template ratio, it is possible to tune the surface area, pore size, pore anisotropy, and dimensions of titania crystallites in the films. Moreover, a post-treatment at high humidity and subsequent slow template removal can be used to achieve pore widening; this treatment is also beneficial for the multilayer deposition of thick films. The resulting homogeneous transparent films can be directly spin- or dip- coated on glass, silicon, and transparent conducting oxide (TCO) substrates. The mesoporous titania films show very high activity in the photocatalytic NO conversion and in the degradation of 4-chlorophenol. Furthermore, the films can be successfully applied as anodes in dye-sensitized solar cells.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja411292u