Predators and trematode parasites jointly affect larval anuran functional traits and corticosterone levels
Non‐consumptive predator effects may have dramatic consequences for host–parasite interactions by influencing the ability of prey items to avoid, resist, or tolerate infection. Both predators and parasites can affect host traits, such as growth rates and behavior, and these effects may in part be me...
Gespeichert in:
Veröffentlicht in: | Oikos 2014-04, Vol.123 (4), p.451-460 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non‐consumptive predator effects may have dramatic consequences for host–parasite interactions by influencing the ability of prey items to avoid, resist, or tolerate infection. Both predators and parasites can affect host traits, such as growth rates and behavior, and these effects may in part be mediated through shared physiological pathways (e.g. the glucocorticoid stress hormone, corticosterone [CORT]). Here, we examined the effects of trematode parasites (Digena: Echinostomatidae) and predator (larval odonate) exposure on larvae of two amphibian species (Rana sylvatica and R. clamitans) in laboratory experiments. First, we measured behavior and CORT responses of tadpoles exposed to predator chemical cue in combination with parasite cue or under direct exposure to parasites. We then measured the combined effects of predator cue and parasite infection on survival and traits. Evidence for effects of parasite cue in our study was equivocal, but we found novel interactive effects of parasites and predators on larval frogs. Parasites and predators had antagonistic effects on CORT, behavior, and morphology, and negative synergistic effects on development. In addition, parasite infection and predator cues additively reduced activity levels of both species and growth in wood frogs. Negative effects of parasite infection on survival and traits were dose‐dependent for both species, although wood frogs generally experienced stronger effects of infection than green frogs. Our results emphasize the importance of considering effects of parasites as well as predators, since both can have strong effects on survival and the combination can have both additive and non‐additive effects on key traits. These effects likely have important implications for amphibian population dynamics, community structure, and conservation. |
---|---|
ISSN: | 0030-1299 1600-0706 |
DOI: | 10.1111/j.1600-0706.2013.00896.x |