Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations
Abstract Background Protein metabolism is an innovative potential therapeutic target for AML. Proteotoxic stress (PS) sensitizes malignant cells for proteasome inhibitor treatment. Some HIV protease inhibitors (HIV-PI) induce PS and may therefore be combined with proteasome inhibitors to achieve PS-...
Gespeichert in:
Veröffentlicht in: | Leukemia research 2014-03, Vol.38 (3), p.383-392 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Background Protein metabolism is an innovative potential therapeutic target for AML. Proteotoxic stress (PS) sensitizes malignant cells for proteasome inhibitor treatment. Some HIV protease inhibitors (HIV-PI) induce PS and may therefore be combined with proteasome inhibitors to achieve PS-targeted therapy of AML. Methods We investigated the effects of all nine approved HIV-PI alone and in combination with proteasome inhibitors on AML cell lines and primary cells in vitro. Results Ritonavir induced cytotoxicity and PS at clinically achievable concentrations, and induced synergistic PS-triggered apoptosis with bortezomib. Saquinavir, nelfinavir and lopinavir were likewise cytotoxic against primary AML cells, triggered PS-induced apoptosis, inhibited AKT-phosphorylation and showed synergistic cytotoxicity with bortezomib and carfilzomib at low micromolar concentrations. Exclusively nelfinavir inhibited intracellular proteasome activity, including the β2 proteasome activity that is not targeted by bortezomib/carfilzomib. Conclusions Of the nine currently approved HIV-PI, ritonavir, saquinavir, nelfinavir and lopinavir can sensitize AML primary cells for proteasome inhibitor treatment at low micromolar concentrations and may therefore be tested clinically toward a proteotoxic stress targeted therapy of AML. |
---|---|
ISSN: | 0145-2126 1873-5835 |
DOI: | 10.1016/j.leukres.2013.12.017 |