Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4

Rhodococcus erythropolis N9T-4 shows extremely oligotrophic growth and requires CO2 for its growth. In this report, nitrogen sources for the oligotrophic growth of N9T-4 were examined. As is true for most other bacteria, N9T-4 preferred ammonium salt to nitrate as the nitrogen source on an inorganic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2014-01, Vol.117 (1), p.28-32
Hauptverfasser: Yoshida, Nobuyuki, Inaba, Satoshi, Takagi, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rhodococcus erythropolis N9T-4 shows extremely oligotrophic growth and requires CO2 for its growth. In this report, nitrogen sources for the oligotrophic growth of N9T-4 were examined. As is true for most other bacteria, N9T-4 preferred ammonium salt to nitrate as the nitrogen source on an inorganic minimum medium without carbon sources. Interestingly, N9T-4 could also grow on the minimal medium solidified by agarose or silica gel without carbon and nitrogen sources, suggesting that this bacterium is also oligotrophic for nitrogen. We can rule out the possibility of diazotrophic growth of this bacterium, because nitrogenase activity was not detected in the cells and the putative gene encoding nitrogenase was not found in N9T-4 genome. DNA microarray analysis revealed that one of the ammonium transporter genes (amtB) was strongly upregulated 40–50 fold higher under oligotrophic conditions than under heterotrophic conditions. Disruption of amtB led to a growth defect under nitrogen-limiting conditions. Furthermore, additional ammonia vapor enhanced the growth of N9T-4 on the minimum medium without nitrogen sources in a closed culture system. These results suggest that N9T-4 utilizes the trace amount of atmospheric ammonia as the nitrogen source.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2013.06.005