An experimental assessment of toxic potential of nanoparticle preparation of heavy metals in streptozotocin induced diabetes

Nanoparticle preparations of heavy metals have attracted enormous scientific and technological interest. Biologically produced nanoparticle preparations of heavy metals are elaborately described in traditional texts and being widely prescribed. The underlying interactions of nano preparations within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental and toxicologic pathology : official journal of the Gesellschaft für Toxikologische Pathologie 2013-11, Vol.65 (7-8), p.1127-1135
Hauptverfasser: Gandhi, Sonia, Srinivasan, B.P., Akarte, Atul Sureshrao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoparticle preparations of heavy metals have attracted enormous scientific and technological interest. Biologically produced nanoparticle preparations of heavy metals are elaborately described in traditional texts and being widely prescribed. The underlying interactions of nano preparations within the physiological fluids are key feature to understand their biological impact. In this perspective, we performed an experimental assessment of the toxicity potential of a marketed metallic preparation named Vasant Kusumakar Ras (VKR), wherein different heavy metals in composite form are reduced to nanoparticle size to produce the desired effect in diabetes and its complications. VKR (50mg/kg) was administered to Albino Wistar rats rendered diabetic using streptozotocin (90mg/kg) in 2 days old neonates. Anti-hyperglycemic effect was observed with VKR along with increased levels of plasma insulin. Renal variables including total proteins and albumin along with glomerular filtration rate were found to improve biochemically. The results were supplemented by effects on different inflammatory and growth factors like TNF-α, nitric oxide, TGF-β and VEGF. However, the results observed in kidney histopathology were not in accordance with the biochemical parameters. Inflammation observed in kidney was confirmed by immunostaining metallothionein, which was due to the accumulation of heavy metals. Furthermore, mercury accumulation in kidney further confirmed by autometallography, which activated mononuclear phagocyte system, which generated an immune response. This was further supported by increase in the extent of apoptosis in kidney tissues. In conclusion, nanoparticle preparations of heavy metals can be toxic to kidney if it is not regulated with respect to its surface chemistry and dosage.
ISSN:0940-2993
1618-1433
DOI:10.1016/j.etp.2013.05.004