Temperature-mediated stability of the interaction between spider mites and predatory mites in orchards

The nonlinear behavior of the Holling-Tanner predatory-prey differential equation system, employed by R.M. May to illustrate the apparent robustness of Kolmogorov's Theorem when applied to such exploitation systems, is re-examined by means of the numerical bifurcation code AUTO 86 with model pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental & applied acarology 1988-10, Vol.5 (3), p.265-292
Hauptverfasser: Woolkind, D.J. (Washington State Univ., Pullman (USA). Dept. of Pure and Applied Mathematics), Collings, J.B, Logan, J.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonlinear behavior of the Holling-Tanner predatory-prey differential equation system, employed by R.M. May to illustrate the apparent robustness of Kolmogorov's Theorem when applied to such exploitation systems, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature-dependent mite interaction on fruit trees. The most significant result of this analysis is that there exists a temperature range wherein multiple stable states can occur, in direct violation of May's interpretation of this system's satisfaction of Kolmogorov's Theorem: namely, that linear stability predictions have global consequences.
ISSN:0168-8162
1572-9702
DOI:10.1007/bf02366098