Epidermal Growth Factor Stimulates Tyrosine Phosphorylation of Phospholipase C-II Independently of Receptor Internalization and Extracellular Calcium
Epidermal growth factor (EGF) rapidly stimulates the formation of inositol 1,4,5-trisphosphate in a variety of cell types. Previously we have found that in intact cells stimulation of phospholipase C (PLC) activity by EGF is correlated with the retention of increased amounts of PLC activity by a pho...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1989-03, Vol.86 (5), p.1568-1572 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epidermal growth factor (EGF) rapidly stimulates the formation of inositol 1,4,5-trisphosphate in a variety of cell types. Previously we have found that in intact cells stimulation of phospholipase C (PLC) activity by EGF is correlated with the retention of increased amounts of PLC activity by a phosphotyrosine immunoaffinity matrix, suggesting that the EGF-receptor tyrosine kinase phosphorylates PLC. We now define parameters of the mechanism by which EGF addition to A-431 cells stimulates phosphotyrosine immunoisolation of PLC activity and demonstrate that EGF addition to A-431 cells increases tyrosine phosphorylation of PLC. EGF rapidly and reversibly stimulated the anti-phosphotyrosine recovery of increased PLC activity when cells were treated with growth factor at 3 degrees C, indicating that receptor internalization is not required and that the phosphorylation event occurs prior to formation of inositol 1,4,5-trisphosphate. Also, the EGF stimulation of anti-phosphotyrosine recovery of PLC activity occurred in the absence of extracellular Ca2+. Stimulation of PLC activity in intact cells by other agonists, such as bradykinin or ATP, did not result in increased anti-phosphotyrosine recovery of PLC activity, suggesting two separate mechanisms exist in A-431 cells for hormone-stimulated formation of inositol phosphates. Finally, using monoclonal antibodies that specifically recognize three distinct PLC isozymes, we show that an ≈ 145-kDa PLC isozyme (PLC-II) is present in A-431 cells and that EGF treatment of A-431 cells stimulates phosphorylation of PLC-II on both tyrosine and serine residues. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.86.5.1568 |