Epidermal Growth Factor Stimulates Tyrosine Phosphorylation of Phospholipase C-II Independently of Receptor Internalization and Extracellular Calcium

Epidermal growth factor (EGF) rapidly stimulates the formation of inositol 1,4,5-trisphosphate in a variety of cell types. Previously we have found that in intact cells stimulation of phospholipase C (PLC) activity by EGF is correlated with the retention of increased amounts of PLC activity by a pho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-03, Vol.86 (5), p.1568-1572
Hauptverfasser: Wahl, Matthew I., Nishibe, Shunzo, Suh, Pann-Ghill, Rhee, Sue Goo, Carpenter, Graham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epidermal growth factor (EGF) rapidly stimulates the formation of inositol 1,4,5-trisphosphate in a variety of cell types. Previously we have found that in intact cells stimulation of phospholipase C (PLC) activity by EGF is correlated with the retention of increased amounts of PLC activity by a phosphotyrosine immunoaffinity matrix, suggesting that the EGF-receptor tyrosine kinase phosphorylates PLC. We now define parameters of the mechanism by which EGF addition to A-431 cells stimulates phosphotyrosine immunoisolation of PLC activity and demonstrate that EGF addition to A-431 cells increases tyrosine phosphorylation of PLC. EGF rapidly and reversibly stimulated the anti-phosphotyrosine recovery of increased PLC activity when cells were treated with growth factor at 3 degrees C, indicating that receptor internalization is not required and that the phosphorylation event occurs prior to formation of inositol 1,4,5-trisphosphate. Also, the EGF stimulation of anti-phosphotyrosine recovery of PLC activity occurred in the absence of extracellular Ca2+. Stimulation of PLC activity in intact cells by other agonists, such as bradykinin or ATP, did not result in increased anti-phosphotyrosine recovery of PLC activity, suggesting two separate mechanisms exist in A-431 cells for hormone-stimulated formation of inositol phosphates. Finally, using monoclonal antibodies that specifically recognize three distinct PLC isozymes, we show that an ≈ 145-kDa PLC isozyme (PLC-II) is present in A-431 cells and that EGF treatment of A-431 cells stimulates phosphorylation of PLC-II on both tyrosine and serine residues.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.86.5.1568