Colorless polyimides with low coefficient of thermal expansion derived from alkyl-substituted cyclobutanetetracarboxylic dianhydrides
Alkyl‐substituted cyclobutanetetracarboxylic dianhydrides (CBDAs) were synthesized by photo‐dimerization of alkyl‐substituted maleic anhydrides to obtain novel colorless polyimides (PIs). Dimethyl‐substituted CBDA (DM‐CBDA) showed much higher polymerizability with various diamines than conventional...
Gespeichert in:
Veröffentlicht in: | Polymer international 2014-03, Vol.63 (3), p.486-500 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alkyl‐substituted cyclobutanetetracarboxylic dianhydrides (CBDAs) were synthesized by photo‐dimerization of alkyl‐substituted maleic anhydrides to obtain novel colorless polyimides (PIs). Dimethyl‐substituted CBDA (DM‐CBDA) showed much higher polymerizability with various diamines than conventional cycloaliphatic tetracarboxylic dianhydrides and led to high molecular weights of PI precursors. Polyaddition of non‐substituted CBDA and trans‐1,4‐cyclohexanediamine (t‐CHDA) was completely inhibited by salt formation in the initial reaction stage. The use of DM‐CBDA allowed the formation of a homogeneous/viscous PI precursor solution by overcoming the salt formation problem. The prominent substituent effect probably reflects how the methyl substituents of DM‐CBDA contributed to increasing the salt solubility. Some of the thermally imidized DM‐CBDA‐based systems simultaneously possessed non‐coloration, low coefficient of thermal expansion (CTE), very high Tg exceeding 300 °C and very low dielectric constant. Copolymerization was very effective for improving the solubility of DM‐CBDA‐based PIs. The copolyimide cast films prepared via chemical imidization displayed a further decreased CTE without sacrificing other target properties, suggesting that the present materials can be useful as plastic substrates in display devices. The mechanism of self‐chain orientation behavior during solution casting is also discussed. A potential application of the copolyimide systems as optical compensation film materials in liquid crystal displays is proposed. © 2013 Society of Chemical Industry.
A copolyimide shown in the figure simultaneously showed good solution‐processability, high transparency, a high Tg of 335 °C and a low coefficient of thermal expansion (CTE) caused by self‐chain orientation behavior during solution casting. |
---|---|
ISSN: | 0959-8103 1097-0126 |
DOI: | 10.1002/pi.4532 |