A faster FPT algorithm for Bipartite Contraction
The Bipartite Contraction problem is to decide, given a graph G and a parameter k, whether we can obtain a bipartite graph from G by at most k edge contractions. The fixed-parameter tractability of the problem was shown by Heggernes et al. [13], with an algorithm whose running time has double-expone...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2013-11, Vol.113 (22-24), p.906-912 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Bipartite Contraction problem is to decide, given a graph G and a parameter k, whether we can obtain a bipartite graph from G by at most k edge contractions. The fixed-parameter tractability of the problem was shown by Heggernes et al. [13], with an algorithm whose running time has double-exponential dependence on k. We present a new randomized FPT algorithm for the problem, which is both conceptually simpler and achieves an improved 2O(k2)nm running time, i.e., avoiding the double-exponential dependence on k. The algorithm can be derandomized using standard techniques.
•We present an improved FPT algorithm for the Bipartite Contraction problem.•The running time improves on an earlier double-exponential algorithm by Heggernes et al. (2011).•The algorithm uses important separators and randomized coloring in a nontrivial way. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2013.09.004 |