Two zero-sum invariants on finite abelian groups

Let G be an additive finite abelian group with exponent exp(G). Let s(G) (resp. η(G)) be the smallest integer t such that every sequence of t elements (repetition allowed) from G contains a zero-sum subsequence T of length |T|=exp(G) (resp. |T|∈[1,exp(G)]). Let H be an arbitrary finite abelian group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2013-11, Vol.34 (8), p.1331-1337
Hauptverfasser: Fan, Yushuang, Gao, Weidong, Wang, Linlin, Zhong, Qinghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be an additive finite abelian group with exponent exp(G). Let s(G) (resp. η(G)) be the smallest integer t such that every sequence of t elements (repetition allowed) from G contains a zero-sum subsequence T of length |T|=exp(G) (resp. |T|∈[1,exp(G)]). Let H be an arbitrary finite abelian group with exp(H)=m. In this paper, we show that s(Cmn⊕H)=η(Cmn⊕H)+mn−1 holds for all n≥max{m|H|+1,4|H|+2m}.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2013.05.018