Two zero-sum invariants on finite abelian groups
Let G be an additive finite abelian group with exponent exp(G). Let s(G) (resp. η(G)) be the smallest integer t such that every sequence of t elements (repetition allowed) from G contains a zero-sum subsequence T of length |T|=exp(G) (resp. |T|∈[1,exp(G)]). Let H be an arbitrary finite abelian group...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2013-11, Vol.34 (8), p.1331-1337 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be an additive finite abelian group with exponent exp(G). Let s(G) (resp. η(G)) be the smallest integer t such that every sequence of t elements (repetition allowed) from G contains a zero-sum subsequence T of length |T|=exp(G) (resp. |T|∈[1,exp(G)]). Let H be an arbitrary finite abelian group with exp(H)=m. In this paper, we show that s(Cmn⊕H)=η(Cmn⊕H)+mn−1 holds for all n≥max{m|H|+1,4|H|+2m}. |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2013.05.018 |