Exponential stability for stochastic differential equation driven by G-Brownian motion
Consider a stochastic differential equation driven by G-Brownian motion dX(t)=AX(t)dt+σ(t,X(t))dBt which might be regarded as a stochastic perturbed system of dX(t)=AX(t)dt. Suppose the second equation is quasi surely exponentially stable. In this paper, we investigate the sufficient conditions unde...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2012-11, Vol.25 (11), p.1906-1910 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a stochastic differential equation driven by G-Brownian motion dX(t)=AX(t)dt+σ(t,X(t))dBt which might be regarded as a stochastic perturbed system of dX(t)=AX(t)dt. Suppose the second equation is quasi surely exponentially stable. In this paper, we investigate the sufficient conditions under which the first equation is still quasi surely exponentially stable. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2012.02.063 |