Real-coded Genetic Algorithm for system identification and tuning of a modified Model Reference Adaptive Controller for a hybrid tank system

Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2013-03, Vol.37 (6), p.3829-3847
Hauptverfasser: Asan Mohideen, K., Saravanakumar, G., Valarmathi, K., Devaraj, D., Radhakrishnan, T.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challenging task. The main objective of this paper is to design an MRAC with very good steady-state and transient performance for a nonlinear process such as the hybrid tank process. A modification to the MRAC scheme is proposed in this study. Real-coded Genetic Algorithm (RGA) is used to tune off-line the controller parameters. Three different versions of MRAC and also a Proportional Integral Derivative (PID) controller are employed, and their performances are compared by using MATLAB. Input–output data of a coupled tank setup of the hybrid tank process are obtained by using Lab VIEW and a system identification procedure is carried out. The accuracy of the resultant model is further improved by parameter tuning using RGA. The simulation results shows that the proposed controller gives better transient performance than the well-designed PID controller or the MRAC does; while giving equally good steady-state performance. It is concluded that the proposed controllers can be used to achieve very good transient and steady state performance during the control of any nonlinear process.
ISSN:0307-904X
DOI:10.1016/j.apm.2012.08.019