Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion
To suppress two-dimensional load sway caused by the horizontal boom motion of a rotary crane, both horizontal and vertical boom motions are generally used. However, it would be more energy efficient and safer if a control scheme using only horizontal boom motion could be developed, eliminating the n...
Gespeichert in:
Veröffentlicht in: | Mechatronics (Oxford) 2013-12, Vol.23 (8), p.1223-1236 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To suppress two-dimensional load sway caused by the horizontal boom motion of a rotary crane, both horizontal and vertical boom motions are generally used. However, it would be more energy efficient and safer if a control scheme using only horizontal boom motion could be developed, eliminating the need for any boom vertical motion. In addition, if we can suppress load sway without the need to measure it, cost reduction of sensors can be achieved. Furthermore, the use of simple velocity trajectory patterns such as a trapezoidal velocity pattern and an S-curve acceleration/deceleration pattern, which are widely used in industrial automation systems, may provide cost-effective implementation of controllers. This paper presents a simple model of rotary crane dynamics that includes only significant centrifugal and Coriolis force terms. This simple model allows analytical solutions of the differential equations of the model to be derived. Thus, S-curve trajectory that considers residual vibration suppression without sensing it, using only horizontal boom motion, can be generated by solving only algebraic equations numerically. The effectiveness of the proposed method is demonstrated by numerical simulations and experimental results. |
---|---|
ISSN: | 0957-4158 1873-4006 |
DOI: | 10.1016/j.mechatronics.2013.09.001 |