Short-term earth orientation parameters predictions by combination of the least-squares, AR model and Kalman filter
► We employ a combination of least squares (LS), AR model and Kalman filter (LS+AR+Kalman) in short-term prediction of the EOP. ► The LS+AR+Kalman method works better than the LS+AR model. ► LS+AR+Kalman shows general better results compared to the EOP PCC. This study employs a combination of the le...
Gespeichert in:
Veröffentlicht in: | Journal of geodynamics 2012-12, Vol.62, p.83-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► We employ a combination of least squares (LS), AR model and Kalman filter (LS+AR+Kalman) in short-term prediction of the EOP. ► The LS+AR+Kalman method works better than the LS+AR model. ► LS+AR+Kalman shows general better results compared to the EOP PCC.
This study employs a combination of the least-squares, an autoregressive (AR) model and a Kalman filter (LS+AR+Kalman) in short-term prediction of the earth orientation parameters (the length-of-day (LOD), UT1-UTC and polar motion). Compared to least-squares and AR model (LS+AR), the combination of least-squares, AR model and Kalman filter performs better in the prediction of UT1-UTC and LOD, and shows a significant improvement in prediction of the polar motion. |
---|---|
ISSN: | 0264-3707 |
DOI: | 10.1016/j.jog.2011.12.001 |