Adjoint consistency analysis of residual-based variational multiscale methods
We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbo...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2013-12, Vol.255, p.396-406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | |
container_start_page | 396 |
container_title | Journal of computational physics |
container_volume | 255 |
creator | Hicken, J.E. Li, J. Sahni, O. Oberai, A.A. |
description | We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbolic problems and finite-element spaces, only a few are adjoint consistent for elliptic problems. |
doi_str_mv | 10.1016/j.jcp.2013.07.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513466819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999113005366</els_id><sourcerecordid>1513466819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-2740316198c925e3a479c73e88160b86e37d669fbaab135f0fec958f616928b13</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANxy5JKwGzeOLU5VxZ9UxAXOlutshKMkLnaC1LfHVTlzWu1qZjXzMXaLUCCguO-Kzu6LEpAXUBfA1RlbICjIyxrFOVsAlJgrpfCSXcXYAYCsVnLB3tZN5904ZdaP0cWJRnvIzGj6Q9oy32aBomtm0-c7E6nJfkxwZnI-KbJh7icXrekpG2j68k28Zhet6SPd_M0l-3x6_Ni85Nv359fNeptbzmFKmVbAUaCSVpUVcbOqla05SYkCdlIQrxshVLszZoe8aqElqyrZChSqlOm0ZHenv_vgv2eKkx5SEOp7M5Kfo8YK-UoIiSpJ8SS1wccYqNX74AYTDhpBH9HpTid0-ohOQ60TuuR5OHkodfhxFHS0LpGhxgWyk268-8f9C4xjdvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513466819</pqid></control><display><type>article</type><title>Adjoint consistency analysis of residual-based variational multiscale methods</title><source>Elsevier ScienceDirect Journals</source><creator>Hicken, J.E. ; Li, J. ; Sahni, O. ; Oberai, A.A.</creator><creatorcontrib>Hicken, J.E. ; Li, J. ; Sahni, O. ; Oberai, A.A.</creatorcontrib><description>We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbolic problems and finite-element spaces, only a few are adjoint consistent for elliptic problems.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2013.07.039</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adjoint consistency ; Adjoints ; Consistency ; Differentiate-then-discretize ; Discretize-then-differentiate ; Dual consistency ; Finite element method ; Functional superconvergence ; Mathematical analysis ; Mathematical models ; Multiscale methods ; Partial differential equations ; Stabilization ; Variational multiscale method</subject><ispartof>Journal of computational physics, 2013-12, Vol.255, p.396-406</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-2740316198c925e3a479c73e88160b86e37d669fbaab135f0fec958f616928b13</citedby><cites>FETCH-LOGICAL-c330t-2740316198c925e3a479c73e88160b86e37d669fbaab135f0fec958f616928b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2013.07.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Hicken, J.E.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Sahni, O.</creatorcontrib><creatorcontrib>Oberai, A.A.</creatorcontrib><title>Adjoint consistency analysis of residual-based variational multiscale methods</title><title>Journal of computational physics</title><description>We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbolic problems and finite-element spaces, only a few are adjoint consistent for elliptic problems.</description><subject>Adjoint consistency</subject><subject>Adjoints</subject><subject>Consistency</subject><subject>Differentiate-then-discretize</subject><subject>Discretize-then-differentiate</subject><subject>Dual consistency</subject><subject>Finite element method</subject><subject>Functional superconvergence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiscale methods</subject><subject>Partial differential equations</subject><subject>Stabilization</subject><subject>Variational multiscale method</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANxy5JKwGzeOLU5VxZ9UxAXOlutshKMkLnaC1LfHVTlzWu1qZjXzMXaLUCCguO-Kzu6LEpAXUBfA1RlbICjIyxrFOVsAlJgrpfCSXcXYAYCsVnLB3tZN5904ZdaP0cWJRnvIzGj6Q9oy32aBomtm0-c7E6nJfkxwZnI-KbJh7icXrekpG2j68k28Zhet6SPd_M0l-3x6_Ni85Nv359fNeptbzmFKmVbAUaCSVpUVcbOqla05SYkCdlIQrxshVLszZoe8aqElqyrZChSqlOm0ZHenv_vgv2eKkx5SEOp7M5Kfo8YK-UoIiSpJ8SS1wccYqNX74AYTDhpBH9HpTid0-ohOQ60TuuR5OHkodfhxFHS0LpGhxgWyk268-8f9C4xjdvU</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Hicken, J.E.</creator><creator>Li, J.</creator><creator>Sahni, O.</creator><creator>Oberai, A.A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131215</creationdate><title>Adjoint consistency analysis of residual-based variational multiscale methods</title><author>Hicken, J.E. ; Li, J. ; Sahni, O. ; Oberai, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-2740316198c925e3a479c73e88160b86e37d669fbaab135f0fec958f616928b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adjoint consistency</topic><topic>Adjoints</topic><topic>Consistency</topic><topic>Differentiate-then-discretize</topic><topic>Discretize-then-differentiate</topic><topic>Dual consistency</topic><topic>Finite element method</topic><topic>Functional superconvergence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiscale methods</topic><topic>Partial differential equations</topic><topic>Stabilization</topic><topic>Variational multiscale method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hicken, J.E.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Sahni, O.</creatorcontrib><creatorcontrib>Oberai, A.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hicken, J.E.</au><au>Li, J.</au><au>Sahni, O.</au><au>Oberai, A.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint consistency analysis of residual-based variational multiscale methods</atitle><jtitle>Journal of computational physics</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>255</volume><spage>396</spage><epage>406</epage><pages>396-406</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbolic problems and finite-element spaces, only a few are adjoint consistent for elliptic problems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2013.07.039</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2013-12, Vol.255, p.396-406 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513466819 |
source | Elsevier ScienceDirect Journals |
subjects | Adjoint consistency Adjoints Consistency Differentiate-then-discretize Discretize-then-differentiate Dual consistency Finite element method Functional superconvergence Mathematical analysis Mathematical models Multiscale methods Partial differential equations Stabilization Variational multiscale method |
title | Adjoint consistency analysis of residual-based variational multiscale methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint%20consistency%20analysis%20of%20residual-based%20variational%20multiscale%20methods&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hicken,%20J.E.&rft.date=2013-12-15&rft.volume=255&rft.spage=396&rft.epage=406&rft.pages=396-406&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2013.07.039&rft_dat=%3Cproquest_cross%3E1513466819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513466819&rft_id=info:pmid/&rft_els_id=S0021999113005366&rfr_iscdi=true |