Adjoint consistency analysis of residual-based variational multiscale methods
We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbo...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2013-12, Vol.255, p.396-406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbolic problems and finite-element spaces, only a few are adjoint consistent for elliptic problems. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2013.07.039 |