Adjoint consistency analysis of residual-based variational multiscale methods

We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2013-12, Vol.255, p.396-406
Hauptverfasser: Hicken, J.E., Li, J., Sahni, O., Oberai, A.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbolic problems and finite-element spaces, only a few are adjoint consistent for elliptic problems.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2013.07.039