Three‐phase hollow‐fiber liquid‐phase microextraction combined with HPLC–UV for the determination of isothiazolinone biocides in adhesives used for food packaging materials

The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one in adhesives. The procedure involves a three‐phase hollow‐fiber liquid‐phase microextracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of separation science 2014-02, Vol.37 (3), p.272-280
Hauptverfasser: Rosero‐Moreano, Milton, Canellas, Elena, Nerín, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one in adhesives. The procedure involves a three‐phase hollow‐fiber liquid‐phase microextraction using a semipermeable polypropylene membrane, which contained 1‐octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF‐MS, where the identification of the compounds and the quantification values were confirmed.
ISSN:1615-9306
1615-9314
DOI:10.1002/jssc.201300840