A novel approach to interpretation of the time-dependent self-diffusion coefficient as a probe of porous media geometry
[Display omitted] ► New approximation describing fluid diffusion in the porous media. ► Time dependence of the self-diffusion coefficient. ► Choosing semi-log coordinates can reduce the time dependence to linear. ► Slope determined by the porous media geometry and the bulk self-diffusion coefficient...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance (1997) 2013-05, Vol.230, p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
► New approximation describing fluid diffusion in the porous media. ► Time dependence of the self-diffusion coefficient. ► Choosing semi-log coordinates can reduce the time dependence to linear. ► Slope determined by the porous media geometry and the bulk self-diffusion coefficient.
This article presents a new approximation describing fluid diffusion in porous media. Time dependence of the self-diffusion coefficient D(t) in the permeable porous medium is studied based on the assumption that diffusant molecules move randomly. An analytical expression for time dependence of the self-diffusion coefficient was obtained in the following form: D(t)=(D0-D∞)exp(-D0t/λ)+D∞, where D0 is the self-diffusion coefficient of bulk fluid, D∞ is the asymptotic value of the self-diffusion coefficient in the limit of long time values (t→∞), λ is the characteristic parameter of this porous medium with dimensionality of length. Applicability of the solution obtained to the analysis of experimental data is shown. The possibility of passing to short-time and long-time regimes is discussed. |
---|---|
ISSN: | 1090-7807 1096-0856 |
DOI: | 10.1016/j.jmr.2013.01.004 |