On parallelizing dual decomposition in stochastic integer programming

For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Carøe and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters 2013-05, Vol.41 (3), p.252-258
Hauptverfasser: Lubin, Miles, Martin, Kipp, Petra, Cosmin G., Sandıkçı, Burhaneddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Carøe and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of the master program by using structure-exploiting interior-point solvers. Our results demonstrate the potential for parallel speedup and the importance of regularization (stabilization) in the dual optimization. Load imbalance is identified as a remaining barrier to parallel scalability.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2013.02.003