Hybrid conventional and Persistent Scatterer SAR interferometry for land subsidence monitoring in the Tehran Basin, Iran

Excessive groundwater extraction has caused land subsidence in a large rural area located southwest of Tehran, Iran. We used radar images to estimate the temporal and spatial variation in the magnitude of the subsidence. Due to the large perpendicular baselines and rapid temporal decorrelation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing 2013-05, Vol.79, p.157-170
Hauptverfasser: Dehghani, Maryam, Valadan Zoej, Mohammad Javad, Hooper, Andrew, Hanssen, Ramon F., Entezam, Iman, Saatchi, Sassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excessive groundwater extraction has caused land subsidence in a large rural area located southwest of Tehran, Iran. We used radar images to estimate the temporal and spatial variation in the magnitude of the subsidence. Due to the large perpendicular baselines and rapid temporal decorrelation of the available data, the application of conventional synthetic aperture radar interferometry (InSAR) to monitor the deformation was not possible. Instead, we applied a recently developed Persistent Scatterer InSAR (PSI) method but found that displacements were underestimated in some areas due to high deformation rates that cause temporal aliasing of the signal. We therefore developed a method that combines conventional InSAR and PSI to estimate the high deformation rates in the southwestern Tehran Basin. We used rates estimated from conventional small temporal baseline interferograms to reduce the likelihood of aliasing and then applied PSI to the residual phase. The method was applied to descending and ascending ENVISAT ASAR images spanning from 2003 to 2009. Mean line-of-sight velocities obtained from both orientations that were further decomposed into horizontal and vertical deformation components were highly compatible with each other, indicating the high performance of the applied method. The mean precision of the estimated vertical component is 2.5mm/yr. We validated our results using measurements from a continuous GPS station located in one of the subsiding areas. The results also compare favourably with levelling data acquired over a different time interval. Finally, we compared the estimated displacements to hydraulic head variations and geologic profiles at several piezometric wells. We found that the geology is the most important factor controlling the subsidence rate in the southwestern Tehran Basin, regardless of the water level decline.
ISSN:0924-2716
1872-8235
DOI:10.1016/j.isprsjprs.2013.02.012