Constant false alarm rate detector based on the maximal reference cell
In order to improve the detection performance of constant false alarm rate (CFAR) detectors in multiple targets situations, a CFAR detector based on the maximal reference cell (MRC) named MRC-CFAR is proposed. In MRC-CFAR, a comparison threshold is generated by multiplying the amplitude of MRC by a...
Gespeichert in:
Veröffentlicht in: | Digital signal processing 2013-12, Vol.23 (6), p.1974-1988 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to improve the detection performance of constant false alarm rate (CFAR) detectors in multiple targets situations, a CFAR detector based on the maximal reference cell (MRC) named MRC-CFAR is proposed. In MRC-CFAR, a comparison threshold is generated by multiplying the amplitude of MRC by a scaling factor. The number of the reference cells left, whose amplitudes are smaller than the comparison threshold, is counted and compared with a threshold integer. Based on the comparison result, proper reference cells are selected for detection threshold computation. A closed-form analysis for MRC-CFAR in both homogeneous and non-homogeneous environments is presented. The performance of MRC-CFAR is evaluated and compared with other CFAR detectors. MRC-CFAR exhibits a very low CFAR loss in a homogeneous environment and performs robustly during clutter power transitions. In multiple targets situations, MRC-CFAR achieves a much better detection performance than switching CFAR (S-CFAR) and order-statistic CFAR (OS-CFAR). Experiment results from an X-band linear frequency modulated continuous wave radar system are given to demonstrate the efficiency of MRC-CFAR. Because ranking reference cells is not required for MRC-CFAR, the computation load of MRC-CFAR is low; it is easy to implement the detector in radar system in practice.
•A CFAR detector based on maximal reference cell (MRC) named MRC-CFAR is proposed.•The amplitude of MRC is used to select reference cells for threshold computing.•MRC-CFAR performs well in homogeneous and clutter edge environments.•MRC-CFAR has a much better performance than S-CFAR in multiple targets situation.•Simulation and experiment results are given to verify the efficiency of MRC-CFAR. |
---|---|
ISSN: | 1051-2004 1095-4333 |
DOI: | 10.1016/j.dsp.2013.07.009 |