Nanofibers-based nanoweb promise superhydrophobic polyaniline: From star-shaped to leaf-shaped structures

•Star-shaped and leaf-shaped PANIs were prepared using lithium triflate as dopant.•Star-shaped and leaf-shaped PANIs both exhibit good superhydrophobicity.•The good superhydrophobicity is due to the special nanoweb structure and low surface tension of dopant. Star-shaped and leaf-shaped polyaniline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2013-11, Vol.409, p.255-258
Hauptverfasser: Fan, Haosen, Wang, Hao, Guo, Jing, Zhao, Ning, Xu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Star-shaped and leaf-shaped PANIs were prepared using lithium triflate as dopant.•Star-shaped and leaf-shaped PANIs both exhibit good superhydrophobicity.•The good superhydrophobicity is due to the special nanoweb structure and low surface tension of dopant. Star-shaped and leaf-shaped polyaniline (PANI) hierarchical structures with interlaced nanofibers on the surface were successfully prepared by chemical polymerization of aniline in the presence of lithium triflate (LT). Chemical structure and composition of the star-like PANI obtained were characterized by FTIR and UV–vis spectra. PANI 2D architectures can be tailored from star-shaped to leaf-shaped structures by change the concentration of LT. The synthesized star-like and leaf-like polyaniline show good superhydrophobicity with water contact angles of both above 150° due to the combination of the rough nanoweb structure and the low surface tension of fluorinated chain of dopant. This method is a facile and applicable strategy for a large-scale fabrication of 2D PANI micro/nanostructures. Many potential applications such as self-cleaning and antifouling coating can be expected based on the superhydrophobic PANI micro/nanostructures.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2013.07.056